Fuzzy inference systems implemented on neural architectures for motor fault detection and diagnosis

نویسندگان

  • Sinan Altug
  • Mo-Yuen Chen
  • H. Joel Trussell
چکیده

Motor fault detection and diagnosis involves processing a large amount of information of the motor system. With the combined synergy of fuzzy logic and neural networks, a better understanding of the heuristics underlying the motor fault detection/diagnosis process and successful fault detection/diagnosis schemes can be achieved. This paper presents two neural fuzzy (NN/FZ) inference systems, namely, Fuzzy Adaptive Learning Control/Decision Network (FALCON) and Adaptive Network Based Fuzzy Inference System (ANFIS), with applications to induction motor fault detection/diagnosis problems. The general specifications of the NN/FZ systems are discussed. In addition, the fault detection/diagnosis structures are analyzed and compared with regard to their learning algorithms, initial knowledge requirements, extracted knowledge types, domain partitioning, rule structuring and modifications. Simulated experimental results are presented in terms of motor fault detection accuracy and knowledge extraction feasibility. Results suggest new and promising research areas for using NN/FZ inference systems for incipient fault detection and diagnosis in induction motors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FUZZY BASED FAULT DETECTION AND CONTROL FOR 6/4 SWITCHED RELUCTANCE MOTOR

Prompt detection and diagnosis of faults in industrial systems areessential to minimize the production losses, increase the safety of the operatorand the equipment. Several techniques are available in the literature to achievethese objectives. This paper presents fuzzy based control and fault detection for a6/4 switched reluctance motor. The fuzzy logic control performs like a classicalproporti...

متن کامل

Stator Turn-to-Turn Fault Detection of Induction Motor by Non-Invasive Method Using Generalized Regression Neural Network

Condition monitoring and protection methods based on the analysis of the machine's current are widely used according to non-invasive characteristics of current transformers. It should be noted that, these sensors are installed by default in the machine control center. On the other hand, condition monitoring based on mathematical methods has been proposed in literature. However, they are model b...

متن کامل

Artificial Intelligence Applications in the Diagnosis of Power Transformer Incipient Faults

To My lovely wife, Tong Wang And my to-be-born baby girl, Lucia Wang i ABSTRACT This dissertation is a systematic study of artificial intelligence (AI) applications for the diagnosis of power transformer incipient fault. The AI techniques include artificial neural networks (ANN, or briefly neural networks-NN), expert systems, fuzzy systems and multivariate regression. The fault diagnosis is bas...

متن کامل

Design of nonlinear parity approach to fault detection and identification based on Takagi-Sugeno fuzzy model and unknown input observer in nonlinear systems

In this study, a novel fault detection scheme is developed for a class of nonlinear system in the presence of sensor noise. A nonlinear Takagi-Sugeno fuzzy model is implemented to create multiple models. While the T-S fuzzy model is used for only the nonlinear distribution matrix of the fault and measurement signals, a larger category of nonlinear systems is considered. Next, a mapping to decou...

متن کامل

Predictive Maintenance Based on Earlier Fault Detection of Multi Phase Induction Machines Using Neural Network Artificial Intelligent Techniques

The area of multiphase variable-speed motor drives in general and multiphase induction Motor drives in particular have experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-ofthe-art in this area....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Industrial Electronics

دوره 46  شماره 

صفحات  -

تاریخ انتشار 1999